原子層制御により磁気メモリー素子の平坦性および磁気安定性を改善 ~次世代不揮発性磁気抵抗メモリーMRAMの開発を加速~(産総研)

2021.07.21更新



◆ポイント◆
・原子層レベルで制御されたタンタルを下地に用いることで磁気記憶層を平坦化することに成功
・磁気安定性および電圧磁化制御効率の劣化要因となる原子拡散を抑制
・超低消費電力な次世代磁気抵抗メモリーMRAMの実現に期待


◆概要◆

国立研究開発法人 産業技術総合研究所【理事長 石村 和彦】(以下「産総研」という)新原理コンピューティング研究センター【研究センター長 湯浅 新治】不揮発メモリチーム 山本 竜也 研究員、野﨑 隆行 研究チーム長らは、原子層レベルで制御されたタンタルを用いることで、磁気抵抗メモリー(以下、「MRAM」)の磁気安定性を飛躍的に改善する技術を開発した。

電圧により強磁性金属からなる磁気記憶層の磁化を制御する電圧磁化制御技術は、MRAMの消費電力を低減するキーテクノロジーとして注目されている。情報書き込みに電圧を用いる電圧書き込み方式MRAM(以下、「電圧駆動MRAM」)の磁気記憶層は厚みがおよそ1 ナノメートル(100万分の1ミリメートル)と非常に薄いため、配線工程で400˚C近い高温にさらされた際に電極材料と混ざり合い、記憶特性の指標である磁気安定性や電圧磁化制御効率(以下、「制御効率」)が大きく低下してしまうことが課題となっていた。今回、磁気記憶層としてコバルト鉄ボロン(CoFeB)合金を用い、CoFeBとほとんど混ざり合わない酸化マグネシウム(MgO)を拡散防止層として金属電極との間に挿入することで、磁気安定性や制御効率を低下させる要因となる原子拡散をブロックすることに成功した。また、わずか1原子のタンタル(Ta)層をCoFeB層の下地として用いることで積層膜の平坦性が劇的に改善され、磁化の向きがそろった磁気記憶層を形成できることを見いだした。今回開発した磁気記憶層を用いた電圧駆動MRAMは書き込み時の電流を極限まで抑えることができるため、現在主流である電流書き込み方式MRAM(以下、「STT-MRAM」)に比べて駆動電力を大幅に低減でき、超低消費電力な次世代MRAMの実現につながると期待される。なお、この技術の詳細は、2021年7月21日付(中央ヨーロッパ夏時間)で学術誌Acta Materialiaにオンライン掲載される。



写真

今回開発した磁気記憶層の透過電子顕微鏡写真(上)と記憶層中の磁化の模式図(下)

 

◆今後の予定◆

今後は、磁気記憶層の電圧書き込み特性の評価を行い、メモリー素子としての動作検証を進めていく。また、今回開発した磁気記憶層およびプロセス技術は電圧駆動MRAMだけでなく、電流書き込み方式MRAMにも応用可能である。今後は原子層制御の技術を新材料へ幅広く展開し、MTJ素子のさらなる特性改善に向けて研究開発に取り組んでいく。

最新のEMC関連規格動向は『月刊EMC』にて随時掲載しています。


Copyright(C) Kagakujyoho shuppan Co., Ltd. All rights reserved.
※記事の無断転用を禁じます。