全脳からシナプススケールにズームインするイメージング技術の開発に成功 ~組織透明化技術と電子顕微鏡技術の融合によりシームレスな観察を実現~(AMED)

2022.02.07更新

概要

順天堂大学大学院医学研究科脳回路形態学(神経機能構造学)の日置寛之教授、山内健太助教ら、および大阪大学大学院歯学研究科口腔解剖学第二教室の古田貴寛講師らの共同研究グループは、全脳スケールからシナプススケールまで神経回路の構造をズームインしながら観察する手法の開発に成功しました。神経回路を構成する神経線維には、ヒトでは最長で1メートルを超す軸索があり、マウスのような小さな動物でもその長さは数センチメートルに及ぶものがあります。このような大規模な回路構造の解析には、光学顕微鏡による観察が適しています。一方、回路結合のエッセンスであるシナプスはナノメートルスケールの構造であり、電子顕微鏡※1を用いないと観察することができません。本研究で開発した組織構造観察技術は、組織透明化技術※2と電子顕微鏡観察技術との融合により、全脳構造からシナプス構造までのシームレスな観察を実現し、脳の機能基盤である神経回路構造の網羅的な解析に貢献します。本論文はiScience誌のオンライン版に2021年12月27日付で公開されました。

ポイント

  • 超微細構造※3を保持した組織透明化技術を確立
  • 透明化標本内における蛍光顕微鏡観察と電子顕微鏡観察との両立により、全脳構造からシナプス構造までのシームレスな構造観察を実現
  • 大規模スケールの構造観察から、狙いをつけた超微細構造へズームイン技術を確立
図 本研究で開発した全脳からシナプススケールへのズームイン技術"

図 本研究で開発した全脳からシナプススケールへのズームイン技術

今後の予定

本研究において研究グループが開発した組織構造解析技術は、様々な脳部位や動物種で適用可能であり、さらには狙った神経回路の配線図を迅速に手にすることを可能とします。これらの特徴により、これまで解き明かされていなかった神経回路の配線図が次々と解明されることが期待されます。また今回、開発した組織構造観察技術は、疾患の病態解明に大きく貢献すると期待されます。疾患モデル動物を用いた研究において、ある特定の異常領域を大規模構造データの中から見い出し、そこに狙いをつけズームインして超微細構造の解析まで繋げることにより、これまで見つけることができなかった病態の発症機序や薬理作用を明らかにすることができると考えられます。

【注釈】

※1 電子顕微鏡
光を用いる光学顕微鏡(蛍光顕微鏡など)に比べ、電子線を用いる電子顕微鏡は、より高精細な観察を可能にする。透過型電子顕微鏡と走査型電子顕微鏡がよく用いられる。
※2 組織透明化技術
生体組織内では光が散乱することが多いため不透明となる。溶液処理によって標本の光散乱を低減させることで透明度を向上化させる手法が、組織透明化技術である。
※3 超微細構造
細胞膜や微小管など、光学顕微鏡では観察できない小さい構造物の総称である。なお、シナプスは特徴的な膜構造を呈するため、光学顕微鏡ではなく電子顕微鏡観察によって同定される。

最新のEMC関連規格動向は『月刊EMC』にて随時掲載しています。


Copyright(C) Kagakujyoho shuppan Co., Ltd. All rights reserved.
※記事の無断転用を禁じます。